Abstract

Plants have developed several defense mechanisms to cope with various pathogens (bacteria, fungi, virus, and phytoplasma). Among these, RNA interference (RNAi)-mediated defense against viral infection was found to be a major innate immune response. As a counter attack strategy against the host defense, viruses produce suppressors of host RNAi pathway. MicroRNAs (miRNAs) are an abundant class of short (~18-22 nucleotide) non-coding single-stranded RNAs involved in RNAi pathway leading to post-transcriptional regulation of gene expression. Sugarcane streak mosaic virus (SCSMV) is a distinct strain of Potyviridae family which has a single-stranded positive-sense RNA genome causing mosaic disease in sugarcane. In this study, we computationally predicted and experimentally validated the miRNA encoded by the SCSMV genome with detection efficiency of 99.9 % in stem-loop RT-qPCR and predicted their potential gene targets in sugarcane. These sugarcane target genes considerably broaden future investigation of the SCSMV-encoded miRNA function during viral pathogenesis and might be applied as a new strategy for controlling mosaic disease in sugarcane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.