Abstract

Calretinin has been identified as a brain specific calcium-binding protein which appears as a prominent protein in the cochlear nucleus. We identified and localized calretinin in the guinea pig and rat inner ear using polyclonal antibodies. Immunoblot analyses of guinea pig and rat auditory nerve homogenates revealed an immunoreactive band migrating with the same molecular weight as the purified protein, at M r = 29k . Immunocytochemistry was carried out at the light and electron microscope levels. In the guinea pig cochlea, inner hair cells, Deiters' cells, Hensen's cells and interdental cells of the spiral limbus were stained. Most of the cochlear ganglion cells were immunostained. In the guinea pig vestibular organs, the staining was exclusively neuronal and localized in large nerve fibers and nerve calices of the apex of the cristae. Only some vestibular ganglion cells were stained. In the rat cochlea, inner hair cells and most of the ganglion neurons were immunoreactive. In the rat vestibule, large nerve fibers and calices were stained as were some type II hairs cells. Only some vestibular ganglion cells were reactive. Electron microscopic observations of immunostained guinea pig cochlea and vestibule showed that the staining was cytosolic. In addition, specific sub-localization was also found in the apical portion of the nerve calices in association with microvesicles. These results describe the discrete localization of calretinin in the cochlea and in the vestibular receptors and suggest a function associated with biochemical regulations at the level of microvesicles in vestibular afferent neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.