Abstract

A high resolution synchrotron radiation core level photoemission study of the native oxides on In0.53Ga0.47As was carried out in order to determine the various oxidation states present on the surface. The thermal stability of the oxidation states was also investigated by annealing the samples in vacuum at temperatures ranging from 150 to 450 °C. As well as the widely reported oxidation states, various arsenic, gallium, and indium oxides, along with mixed phase gallium arsenic and indium gallium oxides are identified. Elemental binary oxides have been identified as residing at the oxide substrate interface and could play an important role in understanding the growth of metal oxide dielectric layers on the InGaAs surface, due to their apparent chemical stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.