Abstract

BackgroundDisease-associated-microglia (DAM) represent transcriptionally-distinct and neurodegeneration-specific microglial profiles with unclear significance in Alzheimer’s disease (AD). An understanding of heterogeneity within DAM and their key regulators may guide pre-clinical experimentation and drug discovery.MethodsWeighted co-expression network analysis (WGCNA) was applied to existing microglial transcriptomic datasets from neuroinflammatory and neurodegenerative disease mouse models to identify modules of highly co-expressed genes. These modules were contrasted with known signatures of homeostatic microglia and DAM to reveal novel molecular heterogeneity within DAM. Flow cytometric validation studies were performed to confirm existence of distinct DAM sub-populations in AD mouse models predicted by WGCNA. Gene ontology analyses coupled with bioinformatics approaches revealed drug targets and transcriptional regulators of microglial modules predicted to favorably modulate neuroinflammation in AD. These guided in-vivo and in-vitro studies in mouse models of neuroinflammation and neurodegeneration (5xFAD) to determine whether inhibition of pro-inflammatory gene expression and promotion of amyloid clearance was feasible. We determined the human relevance of these findings by integrating our results with AD genome-wide association studies and human AD and non-disease post-mortem brain proteomes.ResultsWGCNA applied to microglial gene expression data revealed a transcriptomic framework of microglial activation that predicted distinct pro-inflammatory and anti-inflammatory phenotypes within DAM, which we confirmed in AD and aging models by flow cytometry. Pro-inflammatory DAM emerged earlier in mouse models of AD and were characterized by pro-inflammatory genes (Tlr2, Ptgs2, Il12b, Il1b), surface marker CD44, potassium channel Kv1.3 and regulators (NFkb, Stat1, RelA) while anti-inflammatory DAM expressed phagocytic genes (Igf1, Apoe, Myo1e), surface marker CXCR4 with distinct regulators (LXRα/β, Atf1). As neuro-immunomodulatory strategies, we validated LXRα/β agonism and Kv1.3 blockade by ShK-223 peptide that promoted anti-inflammatory DAM, inhibited pro-inflammatory DAM and augmented Aβ clearance in AD models. Human AD-risk genes were highly represented within homeostatic microglia suggesting causal roles for early microglial dysregulation in AD. Pro-inflammatory DAM proteins were positively associated with neuropathology and preceded cognitive decline confirming the therapeutic relevance of inhibiting pro-inflammatory DAM in AD.ConclusionsWe provide a predictive transcriptomic framework of microglial activation in neurodegeneration that can guide pre-clinical studies to characterize and therapeutically modulate neuroinflammation in AD.

Highlights

  • Disease-associated-microglia (DAM) represent transcriptionally-distinct and neurodegeneration-specific microglial profiles with unclear significance in Alzheimer’s disease (AD)

  • The Yellow module was enriched for cytoplasmic proteins involved in carbohydrate and lipid metabolism, cholesterol efflux, antigen presentation, oxido-reductase activity and senescence/autophagy and in contrast, the Magenta module was enriched for pro-inflammatory functions including immune signaling, cell proliferation, adhesion, antigen presentation, calcium influx and cytokine production

  • Pathway analyses of key members of AD modules identified transcriptional regulators (Additional file 8: Figure S3, Additional file 3: Table S3) including RelA, Stat1, p53 and Nfkb1 for Magenta, Lxrα/β and Atf-1 for Yellow and Cebpα and Foxo3a for Blue modules. These observations agree with known anti-inflammatory and amyloid β (Aβ)-clearing effects of LXRα/β agonists in AD models [40,41,42] as well as the role of Cebpα in regulating PU.1 which maintains microglial quiescence [43]. These patterns of module expression across various traits and their enriched ontologies and transcriptional regulators suggest that the Magenta module is an AD-associated pro-inflammatory module, the Yellow module is an AD-associated anti-inflammatory module/pro-phagocytic and the Blue module is a homeostatic microglial module while other M1/M2-like modules are not relevant to AD pathology

Read more

Summary

Introduction

Disease-associated-microglia (DAM) represent transcriptionally-distinct and neurodegeneration-specific microglial profiles with unclear significance in Alzheimer’s disease (AD). A recent network analysis of bulk transcriptomes identified distinct microglial co-expression networks (or modules) which when applied to re-analyze microglial single-cell RNAseq data [9, 10] identified novel interferon-related and lipopolysaccharide (LPS)-related co-expression modules and previously unappreciated microglial sub-populations, in addition to DAM in neurodegeneration models [10]. This highlights the value of integrating deeper bulk transcriptomic findings with single cell data to maximize the chances of identifying cellular heterogeneity within a cell population

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call