Abstract

To identify and structurally characterize the precursor conformation of the prion protein (PrP), from which misfolding and aggregation directly commence, has been a long-standing goal. Misfolding converts the α-helical, non-pathogenic functional form of PrP to pathogenic, β-structured oligomeric and amyloidogenic forms, which are the cause of prion diseases. Susceptibility to sporadic prion disease correlates well with the propensity of PrP to misfold to cytotoxic, proteinase K resistant oligomeric conformations at low pH. In this study, mutagenesis at the hydrophobic core of the mouse PrP has been shown to stabilize a monomeric unfolding intermediate (I), which is populated significantly at equilibrium at low pH. Importantly, the rate of formation of β-structured oligomers at low pH is found to correlate well with the extent to which this intermediate is populated. The misfolding process is limited by the dimerization of I, indicating that I is the monomeric precursor conformation that directly initiates misfolding. Structural and thermodynamic characterization by native-state hydrogen–deuterium exchange mass spectrometry studies indicate that the precursor conformation is a partially unfolded form of PrP that forms under misfolding-prone solvent conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call