Abstract
The RING or Really Interesting New Gene represents a family of eukaryotic sequences that bind Zn (II) ions and participate in intracellular processes involving protein-protein interaction. Although found in over 400 different proteins, very little is known regarding the structure-function properties of these domains because of the aggregation problems associated with RING sequences. To augment this data set, we report an unusual 36 AA C-terminal sequence of an extracellular matrix mollusk shell protein, AP7, that exhibits partial homology to the RING family. This Cys, His-containing sequence, termed AP7C, binds Zn (II) and other multivalent ions, but does not utilize a tetracoordinate complexation scheme for binding such as that found in Zn (II) finger polypeptides. Moreover, unlike Zn (II) finger and RING domains, this 36 AA can fold into a relatively stable structure in the absence of Zn (II). This folded structure consists of three short helical segments (A, B, and C), with segments A and B separated by a 4 AA type I beta-turn region and segments B and C separated by a 7 AA loop-like region. Interestingly, the putative RING-like region, -RRPFHECALCYSI-, experiences slow conformational exchange between two structural states in solution, most likely in response to imido ring interconversion at P8 and P21. Poisson-Boltzmann solvation calculations reveal that the AP7C molecular surface possesses a cationic region near its N-terminus, which lies adjacent to the 30 AA mineral modification domain in the AP7 protein. Given that the AP7C sequence does not influence mineralization, it is probable that this cationic pseudo-RING region is utilized by the AP7 protein for other tasks such as protein-protein interaction within the mollusk shell matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.