Abstract

Fault-tolerant control is a fundamental branch in the modern control theory, and has wide applications such as aerospace, automotive technology and nuclear engineering. Particularly, the study of faulty Boolean control networks (BCNs) is meaningful to the disease treatment. This paper focuses on both stuck-at fault and bridging fault in BCNs, and investigates the identification and stabilization of BCNs subject to these two faults. The basic mathematical tool is semi-tensor product (STP) of matrices, which is used to determine the algebraic formulation of faulty BCNs. Through the construction of invariant sets corresponding to the faulty nodes, the relations between these two faults and state transition matrices are presented, which is helpful to identify the faulty nodes. In addition, the robust stabilization of BCNs subject to these two faults is discussed and several new criteria are derived. Finally, the obtained results are applied to analyze the stabilization of oxidative stress response pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.