Abstract

Events from alpha interactions on the surfaces of germanium detectors are a major contribution to the background in germanium-based searches for neutrinoless double-beta decay. Surface events are subject to charge trapping, affecting their pulse shape and reconstructed energy. A study of alpha events on the passivated end-plate of a segmented true-coaxial n-type high-purity germanium detector is presented. Charge trapping is analysed in detail and an existing pulse-shape analysis technique to identify alpha events is verified with mirror pulses observed in the non-collecting channels of the segmented test detector. The observed radial dependence of charge trapping confirms previous results. A dependence of the probability of charge trapping on the crystal axes is observed for the first time. A first model to describe charge trapping effects within the framework of the simulation software SolidStateDetectors.jl is introduced. The influence of metalisation on events from low-energy gamma interactions close to the passivated surface is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call