Abstract

Background: The ability of multidrug-resistant Acinetobacter baumannii to survive in any situation including the acquisition of many different kinds of virulence factors and antibiotic resistance genes is the primary source of worry in hospital settings. Despite their low hydrolysis capability, oxacillinase (OXA) types are often associated with genetic factors such as insertion sequences (ISs) in order to enhance carbapenemase production and mobilization. As a result, assessing the frequency of IS genes in A. baumannii is extremely essential in many hospitals and medical institutions. Aims: The goal of this work is to find the IS ISAba2, which may have a role in antibiotic resistance in extensively drug-resistant (XDR) A. baumannii. Methods: The polymerase chain reaction (PCR) was used to confirm the presence of A. baumannii by identifying the blaOXA-51 gene. According to the current Clinical and Laboratory Standards Institute recommendations (2020), antimicrobials are determined using the Kirby–Bauer disc diffusion technique on Mueller-Hinton agar. The molecular research of ISAba2 includes PCR and Sanger sequencing of the PCR results. Results: Among 38 A. baumannii isolates, 23 (61%) and 25 (66%) were resistant to meropenem and imipenem, respectively. The blaOXA-51 gene was detected in all 21 XDR strains tested; furthermore, ISAba2 was found in all 21 XDR-analyzed A. baumannii isolates. Conclusions: ISAba2 has a high predominance between extreme drug-resistant A. baumannii. The identification of these parameters can assist in the control of infection and decrease of the microorganism's prevalence rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call