Abstract
The function of GAT1, the transporter for the inhibitory neurotransmitter GABA, is characterized by expression in Xenopus laevis oocytes and measurements of GABA-induced uptake of [3H]GABA, 22Na+, and 36Cl-, and GABA-evoked currents under voltage-clamp conditions. N-[4,4-Diphenyl-3-butenyl]-nipecotic acid (SKF-89976-A), a specific inhibitor of GAT1, is used in our system as a pharmacological tool. The GABA-evoked current can be decomposed into a transport current, which is coupled to the GABA uptake, and a transmitter-gated current, which is uncoupled from the GABA uptake. The transport current results from a fixed stoichiometry of 1 GABA/2 Na+/1 Cl- transported during each cycle, as determined by radioactive tracer flux measurements. The transmitter-gated current is mediated by an Na+-conductance pathway. As a competitive inhibitor for GABA uptake, SKF-89976-A can separate the two current components. The GABA uptake is blocked with a K(I) value of approximately 7 microM, whereas the uncoupled transmitter-gated current is inhibited with a K(I) value of approximately 0.03 microM. Thus, the results of this study not only identify the transport mode and the channel mode of GAT1 but also raise the possibility of separating these components in a physiological environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.