Abstract

Human embryonic stem cells (hESC) are pluripotent lines that can differentiate in vitro into cell derivatives of all three germ layers, including cardiomyocytes. Successful application of these unique cells in the areas of cardiovascular research and regenerative medicine has been hampered by difficulties in identifying and selecting specific cardiac progenitor cells from the mixed population of differentiating cells. We report the generation of stable transgenic hESC lines, using lentiviral vectors, and single-cell clones that express a reporter gene (eGFP) under the transcriptional control of a cardiac-specific promoter (the human myosin light chain-2V promoter). Our results demonstrate the appearance of eGFP-expressing cells during the differentiation of the hESC as embryoid bodies (EBs) that can be identified and sorted using FACS (purity>95%, viability>85%). The eGFP-expressing cells were stained positively for cardiac-specific proteins (>93%), expressed cardiac-specific genes, displayed cardiac-specific action-potentials, and could form stable myocardial cell grafts following in vivo cell transplantation. The generation of these transgenic hESC lines may be used to identify and study early cardiac precursors for developmental studies, to robustly quantify the extent of cardiomyocyte differentiation, to label the cells for in vivo grafting, and to allow derivation of purified cell populations of cardiomyocytes for future myocardial cell therapy strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call