Abstract
Paenibacillus polymyxa can serve as a biocontrol agent with a broad host range, but knowledge of the possible contribution of root exudates to its colonization of the rhizosphere remains limited. In this experiment, we identified several organic acids in the root exudates of watermelon. Chemotaxis and swarming assays were performed to investigate the ability of these organic acids to induce the motility of P. polymyxa SQR-21. Oxalic acid, malic acid and citric acid were present in the root exudates but only the intermediate products in tricarboxylic acid cycle, i.e., malic acid and citric acid, could significantly induce motility in P. polymyxa SQR-21. The maximal inducing ability was obtained with malic acid. Values for malic acid were 3.9 and 1.5 times higher than the control in the chemotaxis assay and the swarming assay, respectively. An in vitro experiment further confirmed that these intermediate products in tricarboxylic acid cycle could promote recruitment to P. polymyxa SQR-21, thereby increasing the population in the rhizosphere. In conclusion, some of the organic acids secreted by roots could play an important role in root colonization of SQR-21. This finding contributes to our understanding of the interactions of bacteria and plants under natural conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.