Abstract

BackgroundBordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful.ResultsBy use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA) of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii.ConclusionThe data reported here show that B. holmesii is endowed with a factor highly related to filamentous hemagglutinin (FHA), a prominent virulence factor of the well characterized pathogenic Bordetellae. We show that like in the other Bordetellae the virulence regulatory BvgAS system is also involved in the regulation of fhaB expression in B. holmesii. Taken together these data indicate that in contrast to previous notions B. holmesii may in fact make use of virulence mechanisms related to those described for the other Bordetellae.

Highlights

  • Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough

  • The fhaB coding region of B. holmesii starts with a GTG codon and comprises 8,793 bp with a coding capacity for a 304 kDa protein, which is smaller than filamentous hemagglutinin (FHA) of B. pertussis (367 kDa) but larger than the respective protein of B. avium (273 kDa)

  • We describe the identification of a B. holmesii factor related to the major adhesin of the other pathogenic Bordetellae, the filamentous hemagglutinin FHA

Read more

Summary

Introduction

Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. B. bronchiseptica is known to cause respiratory disease in various mammalian species, but only rarely in humans [2] These "classical" Bordetella species are closely related and the recent determination of their genome sequences confirmed previous suggestions that B. pertussis and B. parapertussis are independent descendents of B. bronchiseptica-like ancestors which during specialization to a single host have sustained a significant erosion of their genetic material [3]. In agreement with their close relationship these organisms produce highly related virulence factors such as several toxins and colonization factors [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call