Abstract

Single-cell migration is a key process in development, homeostasis, and disease. Nevertheless, the control over basic cellular mechanisms directing cells into motile behavior invivo is largely unknown. Here, we report on the identification of a minimal set of parameters the regulation of which confers proper morphology and cell motility. Zebrafish primordial germ cells rendered immotile by knockdown of Dead end, a negative regulator of miRNA function, were used as a platform for identifying processes restoring motility. We have defined myosin contractility, cell adhesion, and cortex properties as factors whose proper regulation is sufficient for restoring cell migration of this cell type. Tight control over the level of these cellular features, achieved through a balance between miRNA-430 function and the action of the RNA-binding protein Dead end, effectively transforms immotile primordial germ cells into polarized cells that actively migrate relative to cells in their environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.