Abstract

Object detection using deep learning over the years became one of the most popular methods for implementation in autonomous systems. Autonomous vehicle requires very reliable and accurate identification and recognition of surrounding objects in real traffic environments to achieve decent detection results. In this paper, special type of Artificial Neural Network (ANN) named Convolutional Neural Network (CNN) was used for identification and recognition of surrounding objects in real traffic. The new model based on CNN was trained and developed to be able to identify and recognize 4 different classes of objects: cars, traffic lights, persons and bicycles. The developed model has shown 94.6% accuracy of object identification and recognizing on the test set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.