Abstract
We report the first preparation of the s-cis,s-cis conformer of dihydroxycarbene (1cc) by means of pyrolysis of oxalic acid, isolation of the lower-energy s-trans,s-trans (1tt) and s-cis,s-trans (1ct) product conformers at cryogenic temperatures in a N2 matrix, and subsequent narrow-band near-infrared (NIR) laser excitation to give 1cc. Carbene 1cc converts quickly to 1ct via quantum-mechanical tunneling with an effective half-life of 22 min at 3 K. The potential energy surface features around 1 were pinpointed by convergent focal point analysis targeting the AE-CCSDT(Q)/CBS level of electronic structure theory. Computations of the tunneling kinetics confirm the time scale of the 1cc → 1ct rotamerization and suggest that direct 1cc → H2 + CO2 decomposition may also be a minor pathway. The intriguing latter possibility cannot be confirmed spectroscopically, but hints of it may be present in the measured kinetic profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.