Abstract
Scanning transmission X-ray microscopy (STXM) and atomic force microscopy have been used to study the morphology and chemical composition of macrophase-segregated block copolymers in plaque formulations based on water-blown flexible polyurethane foams. Although there has been a large body of indirect evidence indicating that the observed macrophase-segregated features in water-rich polyurethane foams are due principally to urea components, this work provides the first direct, spatially resolved spectroscopic proof to support this hypothesis. The STXM results are consistent with a segregation model where urea segments segregate, forming enriched phases with the majority of the polyether- polyol and urethane groups at the chain ends of the urea hard segments. Chemical mapping of the urea, urethane, and polyether distribution about the urea-rich segregated phases showed that the urea concentration changes gradually (across several hundred nanometers) in a butylene oxide-based foam. This mapping also showed the urea-rich segregated phases present as a partial network in an ethylene oxide/propylene oxide sample.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.