Abstract

Unsaturated fatty acids (FAs) serve as nutrients, energy sources, and signaling molecules for organisms, which are the major components for a large variety of lipids. However, structural characterization and quantitation of unsaturated FAs by mass spectrometry remain an analytical challenge. Here, we report the coupling of epoxidation reaction of the C═C in unsaturated FAs and tandem mass spectrometry (MS) for rapid and accurate identification and quantitation of C═C isomers of FAs in a shotgun lipidomics approach. Epoxidation of the C═C leads to the production of an epoxide which, upon collision induced dissociation (CID), produces abundant diagnostic ions indicative of the C═C location. The total intensity of the same set of diagnostic ions for one specific FA C═C isomer was also used for its relative and absolute quantitation. The simple experimental setup, rapid reaction kinetics (<2 min), high reaction yield (>90% for monounsaturated FAs), and easy-to-interpret tandem MS spectra enable a promising methodology particularly for the analysis of unsaturated FAs in complex biological samples such as human plasma and animal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.