Abstract

Biomarker identification and validation for radiation exposure is a rapidly expanding field encompassing the need for well defined animal models and advanced analytical techniques. The resources within the consortium, Medical Countermeasures Against Radiological Threats (MCART), provide a unique opportunity for accessing well defined animal models that simulate the key sequelae of the acute radiation syndrome and the delayed effects of acute radiation exposure. Likewise, the use of mass spectrometry-based analytical techniques for biomarker discovery and validation enables a robust analytical platform that is amenable to a variety of sample matrices and considered the benchmark for biomolecular identification and quantitation. Herein, the authors demonstrate the use of two targeted mass spectrometry approaches to link established MCART animal models to identified metabolite biomarkers. Circulating citrulline concentration was correlated to gross histological gastrointestinal tissue damage, and retinoic acid production in lung tissue was established to be reduced at early and late time points post high dose irradiation. Going forward, the use of mass spectrometry-based metabolomics coupled to well defined animal models provides the unique opportunity for comprehensive biomarker discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.