Abstract

Abstract : Coastal waters represent the commingling of offshore marine and terrestrial surface source waters and therefore are naturally complex and variable. Our long term goal is to establish observational and modeling approaches to predict sources and scales of variability in the source waters, particularly those related to land use activities in upstream watersheds, from observations and measurements in the coastal waters. Hydrologic optics provides an approach to characterizing physical and biogeochemical processes in aquatic systems over a range of time and space scales. The linkage between observations of the inherent optical properties (IOPs; absorption, scattering and fluorescence) and the geophysical properties lie in the establishment of robust optical proxies and the quantification of the temporal and spatial scales over which these proxies remain conservative in their properties. Our objectives are to identify and quantify specific optical and chemical characteristics of the colored particulate and dissolved fractions originating in the Penobscot River system that are associated with defined land use activities (land use proxies), and to determine the scales of variability over which these proxies can be detected both temporally (i.e. seasonal and episodic events) and spatially (from the source into coastal waters).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.