Abstract

High autotrophic nitrogen removal rates of 858 mg N L −1 day −1 or 1.55 g N m −2 day −1 were obtained in a lab-scale rotating biological contactor treating an ammonium rich influent. It was postulated that ammonium was removed as dinitrogen gas by a sequence of aerobic ammonium oxidation to nitrite taking place in the outer biofilm layer and anaerobic ammonium oxidation with nitrite as electron acceptor occuring in the deeper biofilm layer. Chemical evidence for anaerobic ammonium oxidation within intact biofilm sludge from a lab-scale rotating biological contactor could be provided, without direct identification of responsible organisms catalysing this reaction. 15N tracer techniques were used for identification and quantification of nitrogen transformations. In batch tests with biofilm sludge at dissolved oxygen concentrations lower than 0.1 mg L −1, ammonium and nitrite did react in a stoichiometric ratio of 1:1.43 thereby forming dinitrogen. 15N isotope dilution calculations revealed that anaerobic ammonium oxidation was the major nitrogen transformation leading to concomitant ammonium and nitrite removal. Isotopic analysis of the produced biogas showed that both ammonium-N and nitrite-N were incorporated in N 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.