Abstract

Due to the second-order advantage, calibration models based on parallel factor analysis (PARAFAC) decomposition of three-way data are becoming important in routine analysis. This work studies the possibility of fitting PARAFAC models with excitation-emission fluorescence data for the determination of ciprofloxacin in human urine. The finally chosen PARAFAC decomposition is built with calibration samples spiked with ciprofloxacin, and with other series of urine samples that were also spiked. One of the series of samples has also another drug because the patient was taking mesalazine. The mesalazine is a fluorescent substance that interferes with the ciprofloxacin. Finally, the procedure is applied to samples of a patient who was being treated with ciprofloxacin. The trueness has been established by the regression “predicted concentration versus added concentration”. The recovery factor is 88.3% for ciprofloxacin in urine, and the mean of the absolute value of the relative errors is 4.2% for 46 test samples. The multivariate sensitivity of the fit calibration model is evaluated by a regression between the loadings of PARAFAC linked to ciprofloxacin versus the true concentration in spiked samples. The multivariate capability of discrimination is near 8 μg L −1 when the probabilities of false non-compliance and false compliance are fixed at 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.