Abstract

AbstractReversible charge transfer between lanthanide ions is identified as storage mechanism for the current workhorse persistent phosphors. Present evidence relies on sophisticated X‐ray absorption spectroscopy to detect the reversible charge transfer. Here, simple optical spectroscopy is used to study the charge transfer in one of the benchmark persistent phosphors CaAl2O4:Eu2+,Nd3+. Based on the observation that both the trapping and de‐trapping processes in CaAl2O4:Eu2+,Nd3+ are thermally activated, forward charge transfer from Eu2+ to Nd3+ and backward charge transfer from Nd2+ to Eu3+ are identified. The percentages of Eu2+ and Nd3+ involved in the charge transfer are >10%, which exceeds the previous estimates in other persistent phosphors. Furthermore, this strategy offers additional advantage of site selectivity, which enables the identification of the distinct contributions of different Nd3+ sites to the charge transfer. These findings underline the significance of reversible charge transfer in persistent phosphors and move towards a complete understanding of persistent luminescence mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call