Abstract

Aconitum carmichaelii is widely used to treat chronic and intractable diseases due to its remarkable curative effect, but it is also a highly toxic herb with severe cardiac and neurotoxicity. It has been combined with honey for thousands of years to reduce toxicity and enhance efficacy, but there has been no study on the chemical constituent changes in the honey-processing so far. In this study, the chemical constituents of A. carmichaelii before and after honey-processing were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. The results showed that a total of 118 compounds were identified, of which six compounds disappeared and five compounds were newly produced after honey-processing, and the cleavage pathway of main components was elucidated. At the same time, 25 compounds were found to have significant effects on different products, among which four compounds with the biggest difference were selected for quantitative analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry. This study not only explained the chemical differences between the different products, but also helped to control the quality of the honey-processed products more effectively, and laid a foundation for further elucidating the mechanism of chemical constituent change during the honey-processing of A. carmichaelii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call