Abstract
Spectrum sensing data falsification (SSDF) attacks represent a major challenge for cooperative spectrum sensing (CSS) in cognitive radio (CR) networks. In an SSDF attack, a malicious user or many malicious users send false sensing results to the fusion center (FC) to mislead the global decision about spectrum occupancy. Thus, an SSDF attack degrades the achievable detection accuracy, throughput, and energy efficiency of CR networks (CRNs). In this paper, a novel attacker-identification algorithm is proposed that is able to skillfully detect attackers and reject their reported results. Moreover, we provide a novel attacker-punishment algorithm that aims at punishing attackers by lowering their individual energy efficiency, motivating them either to quit sending false results or leave the network. Both algorithms are based on a novel assessment strategy of the sensing performance of each user. The proposed strategy is called delivery-based assessment, which relies on the delivery of the transmitted data to evaluate the made global decision and the individual reports. Mathematical analysis and simulation results show promising performance of both algorithms compared with previous works, particularly when then the number of attackers is very large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.