Abstract

Using a vacuolar preparation virtually free of contamination by other organelles, we isolated vacuolar membranes and demonstrated that they contain an ATPase. Sucrose density gradient profiles of vacuolar membranes show a single peak of ATPase activity at a density of 1.11 g/cm3. Comparison of this enzyme with the two well-studied proton-pumping ATPases of Neurospora plasma membranes and mitochondria shows that it is clearly distinct. The vacuolar membrane ATPase is insensitive to the inhibitors oligomycin, azide, and vanadate, but sensitive to N,N'-dicyclohexylcarbodiimide (Ki = 2 microM). It has a pH optimum of 7.5, requires a divalent cation (Mg2+ or Mn2+) for activity, and is remarkably unaffected (+/- 20%) by a number of monovalent cations, anions, and buffers. In its substrate affinity (Km for ATP = 0.2 mM), substrate preference (ATP greater than GTP, ITP greater than UTP greater than CTP), and loss of activity with repeated 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid washes, the vacuolar membrane ATPase resembles the F1F0 type of ATPase found in mitochondria and differs from the integral membrane type of ATPase in plasma membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.