Abstract

BackgroundCadmium (Cd) is a ubiquitous environmental toxicant for aquatic animals. The freshwater crab, Sinopotamon henanense (S. henanense), is a useful model for monitoring Cd exposure since it is widely distributed in sediments whereby it tends to accumulate several toxicants, including Cd. In the recent years, the toxic effects of Cd in the hepatopancreas of S. henanense have been demonstrated by a series of biochemical analysis and ultrastructural observations as well as the deep sequencing approaches and gene expression profile analysis. However, the post-transcriptional regulatory network underlying Cd toxicity in S.henanense is still largely unknown.ResultsThe miRNA transcriptional profile of the hepatopancreas of S. henanense was used to investigate the expression levels of miRNAs in response to Cd toxicity. In total, 464 known miRNAs and 191 novel miRNAs were identified. Among these 656 miRNAs, 126 known miRNAs could be matched with the miRNAs of Portunus trituberculatus, Eriocheir sinensis and Scylla paramamosain. Furthermore, a total of 24 conserved miRNAs were detected in these four crab species. Fifty-one differentially expressed miRNAs were identified in the Cd-exposed group, with 31 up-regulated and 20 down-regulated. Eight of the differentially expressed miRNAs were randomly selected and verified by the quantitative real-time PCR (qRT-PCR), and there was a general consistency (87.25%) between the qRT-PCR and miRNA transcriptome data. A total of 5258 target genes were screened by bioinformatics prediction. GO term analysis showed that, 17 GO terms were significantly enriched, which were mainly related to the regulation of oxidoreductase activity. KEGG pathway analysis showed that 18 pathways were significantly enriched, which were mainly associated with the biosynthesis, modification and degradation of proteins.ConclusionIn response to Cd toxicity, in the hepatopancreas of S. henanense, the expressions of significant amount of miRNAs were altered, which may be an adaptation to resist the oxidative stress induced by Cd. These results provide a basis for further studies of miRNA-mediated functional adaptation of the animal to combat Cd toxicity.

Highlights

  • Cadmium (Cd) is a ubiquitous environmental toxicant for aquatic animals

  • The toxic effects of Cd in the hepatopancreas of S. henanense have been demonstrated by a series of biochemical analysis and ultrastructural observations [1, 5, 8,9,10,11,12,13,14] as well as the high-throughput sequencing and gene expression profile analysis of the hepatopancreas of S.henanense with and without Cd exposure have been performed [15]

  • The enrichment analysis of the GO term and KEGG pathway for these target genes were subsequently performed in order to gain information of functional adaptation of S. henanense responsive to Cd toxicity. These results provides a basis for further investigation of miRNA-modulating networks involved in the functional adaptation of the animal to combat Cd toxicity

Read more

Summary

Introduction

Cadmium (Cd) is a ubiquitous environmental toxicant for aquatic animals. Cadmium (Cd) is a serious environmental pollutant which occurs naturally, it could be released into environments by natural processes and human activities [1]. In 90% areas of the Haihe Basin, the Cd concentrations of the surface water exceed the Chinese environmental quality standard values (0.01 mg/L), with the average concentration of 0.028 mg/L and the highest concentration of 0.036 mg/L. The ecological risk of waterborne Cd is of particular concern on account of its toxicity toward aquatic organisms, including fish [6], freshwater mussels [7] as well as crabs [1, 5, 8,9,10,11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.