Abstract

The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

Highlights

  • A variety of classic and emerging soil-related bacterial and fungal pathogens causes serious human disease that frequently presents in primary care settings

  • The five strains that were identified by 16S rDNA sequencing as B. cereus/B. thuringiensis were subjected to sequencing of the rpoB gene [35]

  • BLAST analysis of these sequences revealed a > 98% identity with either B. cereus or B. thuringiensis sequences present in the database

Read more

Summary

Introduction

A variety of classic and emerging soil-related bacterial and fungal pathogens causes serious human disease that frequently presents in primary care settings. Bacillus and Paenibacillus spp. in Clinical Samples ubiquitous in the environment and often found in soil, air, water, and food. They form spores that are resistant to heat, cold, and common disinfectants, allowing them to survive on environmental surfaces for prolonged periods [2]. Bacillus anthracis is the etiological agent of the acute and often lethal disease anthrax and Bacillus cereus, commonly known to cause food-borne intoxications, causes local and systemic infections [3]. The other species are generally perceived of little clinical significance and they are commonly considered as contaminants in clinical cultures. Recent reports indicate that these organisms can be responsible for local or systemic infections in humans [4,5,6,7,8,9,10,11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.