Abstract

Effective iron acquisition and fine-tuned intracellular iron storage systems are the main prerequisites for a successful host invasion by a pathogen. Bacteria have developed several different strategies to sequester this essential element from their environment, one relies on the secretion of low molecular weight compounds with high affinity for ferric iron,the so-called siderophores. Here, we report hydroxamate siderophore structures produced by entomopathogenic bacteria of the species Xenorhabdus and Photorhabdus, which are known for their potential to produce bioactive natural products, required for their role as nematode symbiont and insect pathogen. Four siderophores could be identified, namely aerobactin, putrebactin, avaroferrin and ochrobactin C, which was found previously only in marine bacteria. While the putrebactin and avaroferrin producing biosynthesis gene cluster (BGC) is more widespread and most likely was present in a common ancestor of these bacteria, the aerobactin and ochrobactin producing BGC was probably taken up by a few strains individually. For aerobactin a role in virulence towards Galleria mellonella larvae is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.