Abstract

Aquatic organisms possess cellular detoxification systems to deal with pollutants. To explore the influence of reactive oxygen species (ROS) generated in response to nitrite on oxidative stress defenses and the antioxidant system in Megalobrama amblycephala, the full length cDNA sequences were determined for three antioxidant-related genes, namely catalase (MaCAT), selenium-dependent glutathione peroxidase (MaGPx1) and Cu/Zn superoxide dismutase (MaCu/Zn-SOD). Encoded polypeptides that exhibited high identity and similarity with corresponding proteins in other fish species. Expression levels of these antioxidant genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) technique. MaCAT, MaGPx1 and MaCu/Zn-SOD expression was greatest in the liver and qRT-PCR was used to assess expression of these genes in juvenile fish during 72h of exposure to 15mg/L nitrite. Prolonged nitrite exposure resulted in the formation of excess ROS that caused oxidative damage to lipids and proteins and reduced the activities of antioxidant enzymes. Fish exposed to nitrite also showed liver damage. This study provides transcriptional data for MaCAT, MaGPx1 and MaCu/Zn-SOD that suggest expression is related positively with oxidative stress induced by nitrite exposure, indicating that imbalance between ROS and antioxidant defenses is one mechanism underlying nitrite toxicity in M. amblycephala.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.