Abstract

Using RAPD marker analysis, two quantitative trait loci (QTLs) associated with earliness due to reduced fruit-ripening time (days from anthesis to ripening = DTR) were identified and mapped in an F2 population derived from a cross between Lycopersicon esculentum’E6203’ (normal ripening) and Lycopersicon esculentum’Early Cherry’ (early ripening). One QTL, on chromosome 5, was associated with a reduction in both ripening time (5 days) and fruit weight (29.3%) and explained 15.8 and 13% of the total phenotypic variation for DTR and fruit weight, respectively. The other QTL, on chromosome 12, was primarily associated with a reduction only in ripening time (7 days) and explained 12.3% of the total phenotypic variation for DTR. The gene action at this QTL was found to be partially dominant (d/a=0.41). Together, these two QTLs explained 25.1% of the total phenotypic variation for DTR. Additionally, two QTLs associated with fruit weight were identified in the same F2 population and mapped to chromosomes 4 and 6, respectively. Together, these two QTLs explained 30.9% of the total phenotypc variation for fruit weight. For all QTLs, the ’Early Cherry’ alleles caused reductions in both ripening time and fruit weight. The polymorphic band for the most significant RAPD marker (OPAB-06), linked to the reduced ripening time QTL on chromosome 12, was converted to a cleaved amplified polymorphism (CAP) assay for marker-aided selection and further introgression of early ripening time (DTR) into cultivated tomato.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call