Abstract

X-linked retinoschisis (XLR) is a rare medical condition that involves in the splitting of neurosensory layers and the impairment of vision in the retina. In majority of the XLR cases, pathogenic variants in Retinoschisin 1 (RS1) gene have been implicated in males with an early age of onset during early childhood. In the present study, we have recruited two North Indian families having multiple affected male members, who were diagnosed with XLR. The entire protein-coding region of RS1 was screened by PCR-Sanger sequencing and two recurrent pathogenic variants (p.I81N and p.R102Q) were unraveled. The in vitro study of these variants demonstrated the aggregation of mutant RS1 within the endoplasmic reticulum. Furthermore, mutant forms of this protein showed significant intracellular retention, which was evident by the absence of retinoschisin protein fractions in the extracellular media. These inferences were also supported by extensive bioinformatics analysis of the mutants, which showed dramatic conformational changes in the local structure of retinoschisin. Thus, our study suggests that the identified pathogenic variants interfere with proper protein folding, leading to anomalous structural changes ultimately resulting in intracellular retention of retinoschisin within the retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call