Abstract

Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized. SlCOPTs have a conserved architecture consisting of three transmembrane domains and β-strains. However, the presence of essential methionine residues, a methionine-enriched amino-terminal region, an Mx3Mx12Gx3G Cu-binding motif and a cysteine rich carboxy-terminal region, all required for their functionality, is more variable among members. Accordingly, functional complementation assays in yeast indicate that SlCOPT1 and SlCOPT2 are able to transport Cu inside the cell, while SlCOPT3 and SlCOPT5 are only partially functional. In addition, protein interaction network analyses reveal the connection between SlCOPTs and Cu PIB-type ATPases, other metal transporters, and proteins related to the peroxisome. Gene expression analyses uncover organ-dependency, fruit vasculature tissue specialization and ripening-dependent gene expression profiles, as well as different response to Cu deficiency or toxicity in an organ-dependent manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.