Abstract
Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several “sieve element occlusion by forisome” (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains –an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)– but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly. To identify key amino acids involved in MtSEO-F1 dimerization and complex formation, we investigated protein-protein interactions by bimolecular fluorescence complementation and the analysis of yeast two-hybrid and random mutagenesis libraries. We identified a SEO-NTD core region as the major dimerization site, with abundant hydrophobic residues and rare charged residues suggesting dimerization is driven by the hydrophobic effect. We also found that ~45% of the full-length MtSEO-F1 sequence must be conserved for higher-order protein assembly, indicating that large interaction surfaces facilitate stable interactions, contributing to the high resilience of forisome bodies. Interestingly, the removal of 62 amino acids from the C-terminus did not disrupt forisome assembly. This is the first study unraveling interaction sites and mechanisms within the MtSEO-F1 protein at the level of dimerization and complex formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.