Abstract

This paper presents two different finite element (FE) models with Arbitrary Lagrangian Eulerian (ALE) technique to evaluate the effectiveness of FE modeling for estimating the cutting forces in ball-end milling. The milling forces are modeled using a unified mechanics of the cutting approach, which is based on the shear stress, friction coefficient and chip thickness ratio provided through the orthogonal cutting process. Two-dimensional (2D) FE models of the orthogonal cutting are designed for estimating the milling forces using this approach, and explicit dynamic thermo-mechanical analyses are performed to determine the orthogonal cutting data from a set of cutting and material parameters. The oblique transformation approach is used to carry the orthogonal cutting data to the milling cutter geometry. Simulations are numerically and analytically carried out for machining of 20NiCrMo5 material with a tungsten carbide tool and the estimated forces are compared to measured ones. The estimation of milling forces is accurately achieved by the unified mechanics of cutting approach with orthogonal cutting data based on the ALE technique using Eulerian-Lagrangian boundaries. Good agreements between the estimated and measured outcomes reveal an obvious knowledge of an efficient and accurate FE model for determining the ball-end milling forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call