Abstract

Formation of the gluten network depends on glutenin crosslinking via disulfide bonds, and wheat protein disulfide isomerase (wPDI) plays an important role in this process. Here, we identify a substrate gluten protein of wPDI and the mechanism underlying wPDI-promoted glutenin crosslinking. Farinographic, rheologic, and alveographic analysis unambiguously proves that wPDI improves gluten network formation, which is directly observed by 3D reconstruction of the gluten network. Protein analysis and LC-MS/MS reveal that glutenin subunit 1Dx5 is primarily recruited by wPDI to participate in gluten network formation, and its cysteine-containing N-terminal domain (1Dx5-NTD), which harbors three cysteine residues for crosslinking, is purified. 1Dx5-NTD interacts with wPDI in both redox states, possibly folded by reduced wPDI and then catalyzed by oxidized wPDI, as further evidenced by wPDI-promoted self-crosslinking. Consistent with macroscopic observations, our results suggest that wPDI folds 1Dx5-NTD into β-strand structure that favors disulfide bond formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.