Abstract

BackgroundTospoviruses (genus Tospovirus, family Peribunyaviridae, order Bunyavirales) cause significant losses to a wide range of agronomic and horticultural crops worldwide. Identification and characterization of specific sequences and motifs that are critical for virus infection and pathogenicity could provide useful insights and targets for engineering virus resistance that is potentially both broad spectrum and durable. Tomato spotted wilt virus (TSWV), the most prolific member of the group, was used to better understand the structure-function relationships of the nucleocapsid gene (N), and the silencing suppressor gene (NSs), coded by the TSWV small RNA.MethodsUsing a global collection of orthotospoviral sequences, several amino acids that were conserved across the genus and the potential location of these conserved amino acid motifs in these proteins was determined. We used state of the art 3D modeling algorithms, MULTICOM-CLUSTER, MULTICOM-CONSTRUCT, MULTICOM-NOVEL, I-TASSER, ROSETTA and CONFOLD to predict the secondary and tertiary structures of the N and the NSs proteins.ResultsWe identified nine amino acid residues in the N protein among 31 known tospoviral species, and ten amino acid residues in NSs protein among 27 tospoviral species that were conserved across the genus. For the N protein, all three algorithms gave nearly identical tertiary models. While the conserved residues were distributed throughout the protein on a linear scale, at the tertiary level, three residues were consistently located in the coil in all the models. For NSs protein models, there was no agreement among the three algorithms. However, with respect to the localization of the conserved motifs, G18 was consistently located in coil, while H115 was localized in the coil in three models.ConclusionsThis is the first report of predicting the 3D structure of any tospoviral NSs protein and revealed a consistent location for two of the ten conserved residues. The modelers used gave accurate prediction for N protein allowing the localization of the conserved residues. Results form the basis for further work on the structure-function relationships of tospoviral proteins and could be useful in developing novel virus control strategies targeting the conserved residues.

Highlights

  • Tospoviruses cause significant losses to a wide range of agronomic and horticultural crops worldwide

  • The N protein model A total of 15 models were predicted by MULTICOMCLUSTER, MULTICOM-NOVEL and MULTICOMCONSTRUCT and ranked by the web server APOLLO [56], a quality assessment tool to rank the models to determine the five most representatives

  • The N protein model was predicted based on the template Leanyer orthobunyavirus nucleoprotein-Single stranded RNA (ssRNA) complex (4J1GA), a protein of 233 amino acids in complex with ssRNA

Read more

Summary

Introduction

Tospoviruses (genus Tospovirus, family Peribunyaviridae, order Bunyavirales) cause significant losses to a wide range of agronomic and horticultural crops worldwide. Tomato spotted wilt virus (TSWV), the most prolific member of the group, was used to better understand the structure-function relationships of the nucleocapsid gene (N), and the silencing suppressor gene (NSs), coded by the TSWV small RNA. Tospoviruses are transmitted by thrips [3]; with a broad host range of more than 1000 plant species, these viruses infect economically important crops such as bean, pepper, potato, soybean, tobacco and tomato worldwide [5], causing an estimated annual loss of over USD 1 billion globally [4, 6]. Members of the genus Tospovirus are characterized by three-segmented, mostly negative sense RNA genomes, named according to size: L (large), M (medium), and S (small) [7]. Plays a role in viral RNA transcription and replication [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call