Abstract

The hindgut of wood-feeding lower termites is densely colonized by a multitude of symbiotic micro-organisms. While it is well established that the eukaryotic flagellates play a major role in the degradation of lignocellulose, much less is known about the identity and function of the prokaryotic symbionts associated with the flagellates. Our ultrastructural investigations of the gut flagellate Joenia annectens (from the termite Kalotermes flavicollis) revealed a dense colonization of this flagellate by diverse ecto- and endosymbiotic bacteria. Phylogenetic analysis of the small-subunit rRNA gene sequences combined with fluorescence in situ hybridization allowed us to identify and localize the different morphotypes. Furthermore, we could show that K. flavicollis harbours two phylotypes of J. annectens that could be distinguished not only by their small-subunit rRNA gene sequences, but also by differences in their assemblages of bacterial symbionts. Each of the flagellate populations hosted phylogenetically distinct ectosymbionts from the phylum Bacteroidetes, one of them closely related to the ectosymbionts of other termite gut flagellates. A single phylotype of 'Endomicrobia' was consistently associated with only one of the host phylotypes, although not all individuals were colonized, corroborating that 'Endomicrobia' symbionts do not always cospeciate with their host lineages. Flagellates from both populations were loosely associated with a single phylotype of Spirochaetales attached to their cell surface in varying abundance. Current evidence for the involvement of Bacteroidales and 'Endomicrobia' symbionts in the nitrogen metabolism of the host flagellate is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.