Abstract

Although molecular analysis and imaging by mass spectrometry are emerging as tools to identify metabolites and determine their distribution in cells and tissues, it is difficult to directly analyze the labile molecules at the single-cell level. Glucosinolate (GL) is a plant-active substance with much attention as a chemical defense mechanism known as a "mustard oil bomb" in broccoli. When tissue is damaged, these substances undergo rapid degradation, making them unsuitable for conventional mass spectrometry (MS), particularly for surface MS imaging analysis methods that necessitate intricate preprocessing. Herein, a strategy combining cryogenic laser ablation inductively coupled mass spectrometry (CLA-ICP-MS) and capillary microsampling nanospray high-resolution mass spectrometry (HRMS) was developed. The sulfur-rich microzone in tissue which was thought as a suspect GL-rich cell population was located via CLA-ICP-MS. Three GLs in single cells were accurately identified by nanospray HRMS with a hydrogen/deuterium exchange reaction. Subsequently, cell-by-cell imaging by nanospray HRMS showed that the GL-rich cells were below the stalk surface by approximately 30 μm. This proposed strategy can also be applied to rapidly identify labile compounds and localize molecule-rich cells in tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.