Abstract

The kidney of marine teleosts is the major site of Mg(2+) excretion and produces urine with a high Mg(2+) concentration. However, the transporters involved in Mg(2+) excretion are poorly understood. The cyclin M (Cnnm; also known as ancient conserved domain protein) family comprises membrane proteins homologous to the bacterial Mg(2+) and Co(2+) efflux protein, CorC. To understand the molecular mechanism of Mg(2+) homeostasis in marine teleosts, we analyzed the expression of the Cnnm family genes in the seawater (SW) pufferfish, torafugu (Takifugu rubripes), and the closely related euryhaline species, mefugu (Takifugu obscurus). Database mining and phylogenetic analysis indicated that the Takifugu genome contains six members of the Cnnm family: two orthologs of Cnnm1, one of Cnnm2, one of Cnnm3, and two of Cnnm4. RT-PCR analyses indicated that Cnnm2, Cnnm3, and Cnnm4a are expressed in the kidney, whereas other members are mainly expressed in the brain. Renal expression of Cnnm3 was upregulated in SW mefugu, whereas renal expression of Cnnm2 was upregulated in freshwater (FW) mefugu. No significant difference was observed in renal expression of Cnnm4a between SW and FW mefugu. In situ hybridization and immunohistochemical analyses of the SW mefugu kidney revealed that Cnnm3 is expressed in the proximal tubule, and its product localizes to the lateral membrane. When Cnnm3 was expressed in Xenopus laevis oocytes, whole cellular Mg(2+) content and free intracellular Mg(2+) activity significantly decreased. These results suggest that Cnnm3 is involved in body fluid Mg(2+) homeostasis in marine teleosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.