Abstract

Myeloid progenitors that yield neutrophils, monocytes and dendritic cells (DCs) can be identified in and isolated from the bone marrow of mice for hematological and immunological analyses. For example, studies of the cellular and molecular properties of myeloid progenitor populations can reveal mechanisms underlying leukemic transformation, or demonstrate how the immune system responds to pathogen exposure. Previously described flow cytometry strategies for myeloid progenitor identification have enabled significant advances in many fields, but the fractions they identify are very heterogeneous. The most commonly used gating strategies define bone marrow fractions that are enriched for the desired populations, but also contain large numbers of "contaminating" progenitors. Our recent studies have resolved much of this heterogeneity, and the protocol we present here permits the isolation of 6 subpopulations of oligopotent and lineage-committed myeloid progenitors from 2 previously described bone marrow fractions. The protocol describes 3 stages: 1) isolation of bone marrow cells, 2) enrichment for hematopoietic progenitors by magnetic-activated cell sorting (lineage depletion by MACS), and 3) identification of myeloid progenitor subsets by flow cytometry (including fluorescence-activated cell sorting, FACS, if desired). This approach permits progenitor quantification and isolation for a variety of in vitro and in vivo applications, and has already yielded novel insight into pathways and mechanisms of neutrophil, monocyte, and DC differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call