Abstract

BackgroundCumulating evidence reveals the key role of aberrant lipogenesis and immunogenomic features in hepatocellular carcinoma (HCC). However, there are still obstacles in our understanding of the complicated interaction between metabolic reprogramming and tumor immune microenvironment.MethodsWe compared metabolomic, transcriptomic and immunogenomic characteristics of portal vein tumor thrombosis (PVTT) and primary tumor to seek valuable markers. Human HCC samples with PVTT (n = 28) was analyzed through ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Transcript levels of mRNA in two cohorts from published database GEO (n = 60) and TCGA (n = 411) were downloaded to explore differentially expressed genes and functional enriched gene set. Evaluation of immune infiltration was estimated and validated from transcriptomic data in both cohorts through six immune deconvolution algorithms and in a high-resolution mode (CIBERSORTx). Survival analysis (Kaplan–Meier and multivariable Cox regression model) was performed to examine prognostic value of ACLY, related immune checkpoints and immune infiltration levels from TCGA cohort. LASSO regression was further conducted to determine a gene panel to further predict survival outcomes associated with ACLY.ResultsWe identified a novel signature, ATP citrate lyase, through transcriptomic and metabolomic approaches. We demonstrated that the metabolism adaptations in both fatty acid and cholesterol biosynthesis triggered by ACLY oncogenic activation. We illustrated the crucial function of ACLY in lipogenesis and its potential interaction with immune microenvironment. CD276, a promising target in immune checkpoint blockade, showed correlation to ACLY and differential expression in ACLY risk classification. Combination of ACLY, CD276 and immune infiltration level and a novel ACLY-associated panel from a predictive model retrieved from published database validated the prognostic value to risk stratification in patients with HCC.ACLY blockade to counteract metabolic activation and immunosuppressive status of the tumor microenvironment highlighted attractive prospect for translational application.ConclusionsWe investigated ACLY and its indispensable role in metabolism, immune function and a prognostic gene panel in HCC. We anticipate that the multifaced role of ACLY may reveal the potential value for mechanistic research and combinational therapy, suggesting that the combination blockade of ACLY and immune checkpoints may work as a promising strategy.

Highlights

  • Hepatocellular carcinoma (HCC) is the sixth most common cancer and third leading cause of cancer-related death worldwide

  • We anticipate that the multifaced role of ATP citrate lyase (ACLY) may reveal the potential value for mechanistic research and combinational therapy, suggesting that the combination blockade of ACLY and immune checkpoints may work as a promising strategy

  • By using principal component analysis (PCA) analysis, we found that there was no significant difference between portal vein tumor thrombosis (PVTT) and tumor tissue in metabolomics level (Fig. 1C)

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer and third leading cause of cancer-related death worldwide. Portal vein tumor thrombosis (PVTT) is a common phenomenon in HCC [1]. 10–40% of patients exhibit macroscopic PVTT when HCC is first diagnosed [2, 3]. HCC patients complicated by PVTT are characterized with an aggressive disease course indicating deteriorated condition, treatment difficulty, and poor prognosis [4, 5]. The Barcelona Clinic Liver Cancer (BCLC) staging system designates PVTT as advanced disease (BCLC class C) for which only systemic therapy is currently recommended [5, 7]. Cumulating evidence reveals the key role of aberrant lipogenesis and immunogenomic features in hepatocellular carcinoma (HCC). There are still obstacles in our understanding of the complicated interaction between metabolic reprogramming and tumor immune microenvironment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call