Abstract

The numerous bioactive components from Bacillus subtilis are commonly used as antimicrobial agents for reducing plant diseases caused by fungal pathovars. In this study, we isolated and identified B. subtilis SI-18 strain from twenty isolates of rhizosphere soil through morphological and molecular approaches, and explored its inhibitory activities against Rhizoctonia solani. According to morphological features and 16S rRNA and gyrB gene sequence analysis, B. subtilis SI-18 strain was identified. Additionally, the culture filtrate of B. subtilis SI-18 resulted in the suppression of R. solani mycelium growth and material leakage from the cells. Then, we have performed homology modelling and molecular docking study of S9 protein from R. solani where three potential compounds (D1, D2, and D3) were identified among 134 antimicrobial compounds derived from B. subtilis group based on higher binding energy and interaction at the active grove of the target protein. The D1 compound creates alkyl bond at Val48 whereas D2 also binds with Val48 by creating hydrogen bond. On the other hand, two hydrogen bonds were observed at Val48 and Ile52 by D3, which might be responsible for possible blocking of the target S9 protein of R. solani. To validate the docking study and understand the change in drug-ligand conformation, molecular dynamics simulation was assessed where rigid conformation was found for D1, D2 and D3 complexes. Moreover, ADMET study confirms that no toxicity and carcinogenicity were found for screened compounds. Based on our studies, we demonstrated that compounds D1, D2, and D3 derived from B. subtilis can be a potential inhibitor of S9 protein of R. solani that might be a possible strategy for fungal disease prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.