Abstract

Leucine-rich repeat (LRR) is a vital structure in some pattern recognition receptors such as TLRs, NLRs and newly reported LRR-containing proteins. Apart from some limited reported LRR-containing proteins, most of LRR proteins, especially immune-related proteins, remain uncharacterized functionally. In the present study, a transmembrane protein containing several LRR motifs, designated as LvLRRm, was identified from the shrimp Litopenaeus vannamei. LvLRRm contained a long signal peptide, one LRRNT region, 12 LRR motifs, one LRRCT region and a transmembrane region. The transcripts of LvLRRm were widely distributed in all tested tissues of shrimp and they were responsive to Vibrio parahaemolyticus infection in several immune-related tissues including Oka, intestine, gill and hemocytes. Knockdown of LvLRRm by dsRNA interference led to a decreased survival rate of shrimp infected by Vibrio parahaemolyticus and an increased in vivo Vibrio propagation. Meanwhile, knockdown of LvLRRm also down-regulated the expression levels of genes involved in antibacterial immune signaling pathways, including the transcription factors LvDorsal and LvRelish, and several antimicrobial peptides. These data suggested that LvLRRm played important roles in shrimp against Vibrio infection, which was probably functioning through activation of antibacterial immune signaling pathways. The present study provided new evidence to elucidate the immune function of LRR-containing proteins in invertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.