Abstract
The PeNAC1 promoter is a non-tissue-specific and stress-inducible promoter containing a GA-responsive element and a MYB recognition sequence that are responsible for induced expression patterns. NAC transcription factors play vital roles in complex signaling networks during plant stress responses. Promoters as crucial molecular switches are involved in the transcriptional regulation of gene activities dynamic network controlling a variety of biological processes, such as developmental processes, responses to hormone and abiotic stress. In this study, a 1217-bp flanking fragment of the stress-responsive NAC gene PeNAC1 was isolated from Populus euphratica. In transgenic Arabidopsis, this promoter fragment was found to have a higher activity than the cauliflower mosaic virus 35S promoter and remained active throughout the plant life cycle, particularly in the spiral vessels and cortical cells of vascular tissues of various organs. We identified a gibberellic acid-responsive element, required for response to gibberellic acid and involved in the salt-stress signaling pathway, and a MYB recognition sequence, which has an important role in promoter response to drought stress, in the PeNAC1 promoter. These results suggest that the PeNAC1 promoter is more effective, non-tissue-specific, and inducible. In addition, the presence of a putative NAC protein-binding motif in the PeNAC1 promoter indicates that PeNAC1 is either regulated by other NAC transcription factors or is self-regulated. Our research will help reveal the regulatory mechanism of the upstream region of the PeNAC1 gene and provide a foundation for the use of the PeNAC1 promoter in molecular breeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.