Abstract

BackgroundMajor latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco (Nicotiana benthamiana) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection.ResultsIn this study, for the first time we have identified and functionally analyzed the MLP-like protein 28 from N. benthamiana, denoted as NbMLP28 and investigated its role in conferring resistance to N. benthamiana against PVY infection. NbMLP28 was localized to the plasmalemma and nucleus, with the highest level in the root. NbMLP28 gene was hypothesized to be triggered by PVY infection and was highly expressed in jasmonic acid (JA) signaling pathway. Further validation was achieved through silencing of NbMLP28 through virus-induced gene silencing (VIGS) that rendered N. benthamiana plants more vulnerable to PVY infection, contrary to overexpression that enhanced resistance.ConclusionsTaken together, this is the first study describing the role of NbMLP28 in tobacco against PVY infection and provide a pivotal point towards obtaining pathogen-resistant tobacco varieties through constructing new candidate genes of MLP subfamily.

Highlights

  • Major latex proteins (MLPs) belong to the major latex protein (MLP) subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance

  • Identification of the NbMLP28 gene and Phylogenetic analysis We amplified the ORF of NbMLP28 from N. benthamiana using primers, and the ORF of NbMLP28 was aligned with the predicted ORF sequence of NbMLP28 in the N. benthamiana database

  • The structure of NbMLP28 protein predicted by SWISS-MODEL exhibits properties similar to those of the Gossypium hirsutum and Arabidopsis MLP28 (Fig. 2b-d)

Read more

Summary

Introduction

Major latex proteins (MLPs) belong to the MLP subfamily in Bet v 1 protein family and respond to both biotic and abiotic stresses, which play critical roles in plant disease resistance. As the type species of widely distributed and economically devastating Potyvirus, Potato virus Y (PVY) is one of the major constraints to important crop plants including tobacco (Nicotiana benthamiana) worldwide. Despite the great losses owing to PVY infection in tobacco, there is no previous study investigating the potential role of MLPs in developing resistance to viral infection. Despite the importance of MLPs in biotic and abiotic stress responses, no systematic study on the relationship between MLP family members and PVY infection has been conducted

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call