Abstract
Bacteriophage PRD1 is a tailless membrane-containing double-stranded (ds) DNA virus infecting a variety of Gram-negative bacteria. In order to affect cell lysis, like most dsDNA phages, PRD1 uses the holin-endolysin system. In this study, we identified two accessory lysis genes, XXXVI and XXXVII, coding for proteins P36 and P37, respectively. Using genetic complementation assays, we show that protein pair P36/P37 is a functional and interchangeable analogue of the Rz/Rz1 of bacteriophage lambda. Utilizing molecular biology, electrochemical as well as various microscopic techniques, we characterized the lysis phenotypes of PRD1 host cells infected with mutant viruses. Our results indicate that proteins P36 and P37 confer a competitive advantage to the phage by securing the efficient disruption of the infected cell and consequent release of the phage progeny under less favourable growth conditions. In concordance with prior data and the results obtained in this study, we propose a model explaining the role of Rz/Rz1-like proteins in the lysis process: Rz/Rz1 complexes transform the mechanical stress caused by the holin lesion at the CM to the OM leading to its disintegration. Finally, identification of the Rz/Rz1-like genes in PRD1 suggests that tailless icosahedral phages are involved in genetic trade with tailed bacteriophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.