Abstract

MAPKAPK2 (MK2) is an important regulator of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, which is involved in a plethora of cellular processes concluding the development of gamete cells in meiosis and resisting pathogenic bacterial infestation. Hyriopsis cumingii is a significant mussel resource in China and a good material for pearl breeding. To explore the role of MK2 in H. cumingii, MK2 was identified and cloned, whose full-length cDNA was 1568 bp, including 87 bp in 5' UTR, 398 bp in 3' UTR, and 1083 bp in the open reading frame (ORF) region, encoding 360 amino acids. The expression of MK2 was the highest in the gills. Meanwhile, there was a significant difference in the gonads. After Aeromonas hydrophila and Lipopolysaccharide (LPS) infestation, the transcript level of the MK2 was upregulated in the gills. It indicated that MK2 might be involved in the innate immune response of H. cumingii after a pathogenic attack. After quantifying H. cumingii of different ages, it was found that the expression of MK2 was highest at 1 year old. In situ hybridization (ISH) results showed that the blue-purple hybridization signal was very significant in the oocytes and egg membranes of the female gonads of H. cumingii. The expression of MK2 increased gradually at the age of 1 to 5 months and showed a downward trend at the age of 5 to 8 months. It was suggested that MK2 might play an important role in the formation of primitive germ cells in H. cumingii. To sum up, MK2 might not only be involved in the immune response against pathogenic bacterial infection but also might play an important role in the development of the gonads in H. cumingii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call