Abstract

Nerve regeneration is a complex process associated with the expression of hundreds of genes. To elucidate the molecular mechanism responsible for nerve regeneration, hundreds of nerve regeneration-associated genes have been hunted using differential display polymerase chain reaction (DD-PCR), random cloning, microarray and proteomics. Damage-induced neuronal endopeptidase (DINE) is a newly identified nerve regeneration-related molecule derived from normal and axotomized hypoglosssal nuclei using DD-PCR. After full-length cloning, we have found that DINE is a neuron-specific membrane-bound metalloprotease. Damage-induced neuronal endopeptidase shares homology with neprilysin and endothelin-converting enzyme, which degrade or process neuropeptides. Although DINE has some neuroprotective effects, the physiological function of, as well as the substrate for, DINE remains obscure. The most intriguing property of DINE is its extreme transcriptional response against various types of nerve injuries, including that of the peripheral and central nervous systems. Thus, a more detailed expression profile of DINE mRNA was investigated using the dorsal root ganglion (DRG) after sciatic nerve injury. In the DRG, DINE mRNA was observed in small-sized DRG neurons after axotomy. This expression profile was similar to that of the neuropeptide galanin. Both in vitro and in vivo studies revealed that leukemia inhibitory factor and nerve growth factor withdrawal additively enhanced the expression of DINE, as well as that of galanin. Damage-induced neuronal endopeptidase and galanin may use common transcriptional regulation machinery. Although functional correlation of these molecules remains unclear, their simultaneous induction may provide more successful protection for injured neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.