Abstract

Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth and malabsorption syndrome. However, the precise molecular mechanism remains unclear. Here, we report the host cellular proteins that interact with ARV p17 by yeast two-hybrid screening. In this study, the p17 gene was cloned into pGBKT7 to obtain the bait plasmid pGBKT7-p17. After several rounds of screening of a chicken cDNA library, 43 positive clones were identified as possible host factors that interacted with p17. A BLAST search of the sequences was performed on the NCBI website, which ultimately revealed 19 interacting proteins. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genome analyses indicated that the acquired proteins were involved in multicellular organismal processes, metabolic processes, and biological regulation. When the subcellular localization of the host protein and ARV p17 protein was investigated, we observed colocalization of p17-GFP with IGF2BP1-RED and PQBP1-RED in the transfected cells but not with FGF1-RED. The direct interaction of ARV p17 protein with IGF2BP1 and PQBP1 was confirmed by coimmunoprecipitation and GST pulldown assays. We used RT-qPCR to assess the expression variation during ARV infection. The results showed that IGF2BP1, PAPSS2, RPL5, NEDD4L, PRPS2 and IFI16 were significantly upregulated, whereas the expression of FGF1, CDH2 and PQBP1 was markedly decreased in DF-1 cells infected with ARV. Finally, we demonstrated that IGF2BP1 had a positive effect on ARV replication, while PQBP1 had the opposite effect. Our findings provide valuable information for better insights into ARV's pathogenesis and the role of the p17 protein in this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call